BEV Accidents – Consequences in Case of a Battery Thermal Runaway

Abstract

The number of cars which use a battery for propulsion, like BEV (battery electric vehicle) or PHEV (plug-in hybrid electric vehicle), is increasing. Following, the probability of these car types being involved in car accidents will increase. In a worst-case accident scenario, the installed batteries could go under thermal runaway (TR). A TR could be initiated by various causes, e.g., high temperatures from outside, mechanical damage of the cells/modules/batteries or internal and external short circuits. During such an event, large amounts of heat and toxic and/or flammable gases are released. This poses a great hazard to people and property in the immediate vicinity. The paper describes a large-scale test series on the lithium-ion battery TR consequences of automobile cells and modules up to E = 6.85 kWh. Near field temperatures of ΔT > 800°C in a distance of l = 2 m were measured. During an overcharge test, fragment throwing distances of l > 30 m were detected. Subsequent gas explosions of the released gases were documented. Hydrogen fluoride (HF) was measured in all tests, from cell to module. The highest measured concentration was cHF = 76 ppm, which is significantly higher than the 30-min-level for AEGL 2 (acute exposure guideline level 2). Based on the experimentally determined consequences, concrete measures for the accident analysis are subsequently drawn.

 

More information

Main author

Rico Tschirschwitz

Co-Authors

Sarah-K. Hahn, Ulrich Krause

Type of media

PDF

Publication type

Lecture

Publication year

2023

Publisher

EVU

Citation

-